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Abstract. In the work, the numerical approach to solution to discrete dynamical systems of
large dimension, having a block structure with boundary conditions unshared between
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and results of numerical solution to the problem, illustrating effectiveness of the suggested
method, are provided.
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1. Introduction

The article is devoted to the numerical solution to discrete dynamical systems
of large dimension, having a block structure with boundary conditions unshared
between blocks.

Direct usage of methods of carrying over boundary conditions is not efficient
due to the block structure of conditions that allows, as for many other classes of
problems, significantly accelerate their solution.

We note that a lot of encountered in practice mathematical models of discrete
dynamic models of complex processes have been obtained by using the
decomposition of complex objects into simpler subobjects with known mathematical
models or subobjects, for which mathematical models could be easily constructed
([1,7,9,10,12]). The decomposition may be carry out respect to spatial and/or
temporal variables, and it is worth noting that the decomposition of a complex
object is held so that the intermediate states of subobjects are not influenced each
other, i.e. are independent, and the connection between subobjects is implemented
only through input and output states of subobjects ([4,5,7]). Moreover, in practice
subobjects are usually associated with an arbitrary but small number of other
subobjects, and consequently conditions determining the relationship between
subobjects are characterized by a weakly filled Jacobi matrices ([9,10]).

In this paper we propose a numerical approach to solving discrete systems of
block structure with weak and arbitrary connections between subsystems. The
approach is based on the idea of methods of carrying over boundary conditions
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([1,2,5,6]). The idea of article [6], where the numerical solution of a system of
independent three point discrete equations with non-separated boundary conditions
was considered , has been further developed in this article for the case of discrete
systems of block structure with boundary conditions unshared between blocks. Not
only were the formulas for implementation of transferring conditions obtained, also
the results of numerical experiments are provided. We have considered the solution
to the problem arising when applying methods of finite difference approximation to
equations systems with partial derivatives of hyperbolic type, describing the
movement of fluids in the pipeline of complex structure.

2. Statement of the problem

Consider the system of equations describing complex discrete process (the
object) consisting of mutually independent L discrete subprocesses (subobjects),
each of them is described by a system of linear algebraic equations

y't =AYy 4B i=1.,N -1 y"'eR", v=1..L. (1)
Here yVi = (ylvi y:' ) is n, -dimensional vector defining the state of the v —th
process in i— th discrete instant of time; A" and B"' are accordingly n, -
dimensional square matrix and vector; rang AV = n,, 1=1.., N ; N, isduration

of the v — th process; v =1,...,L; * is the sign of transposition.
We introduce the notation

nzinv’ M:inva’ ka:(le./k""’yr‘lek)*ean1
v=l v=1

yl _ (y1,1’ y2,1,_“’y|_,1)* cR". yN _ (yl,N1 yz,N2 ,-..,yL'NL)* cR".
Here M is the overall dimension of the whole system consisting of subsystems (1),
y'eR" and y" € R" are accordingly the states of all subprocesses in the initial

and final (individual for each subprocess) instants of time.
Considered subprocesses are connected through initial and final states in the
shape of unshared boundary conditions, written in the form:

Gy'+Qy" =R, 2)
where G = ((g Y )) Q= ((q” )) are  matrices with dimension nxn,

R= (Rl,...,R”)* is given N —dimensional vector.
We assume that the rank of the augmented matrix (G,Q) is equal to n, i.e.

rang (G, Q) =n, and in general the system of equations (1), (2) has a solution, and

the only one.
Conditions (2) are written in vector form, which will be used subsequently
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L L

Zgls*ysl+zq|s*yst — R| , | =1,..., n, (3)
s=1 s=1

where g* = (0795 | a" = (a0 ) .

The relations (1), (2) represent mathematical models for many complex objects,
processes functioning discretely with lumped or distributed parameters ([3-8]). At
the same time for their mathematical modeling was applyed the decomposition
method upon temporal and / or spatial variables, i.e., partitioning the entire object
into separate subobjects, which function independently from each other, and
connection between them is implemented through their input and output states, i.e.
by the conditions (2).

Boundary value problems described by systems of differential equations with
ordinary or partial derivatives, for solving which grid methods were applyed, can
also be converted to considered problems of the form (1), (2) ([1-6, 10-12]). In this
case systems of equations themselves consist of separate independent subsystems,
connected only by means of initial and/or boundary conditions. In particular, the
problem of calculating the unsteady motion of fluid, gas in pipeline transportation
networks with complex, loopback structure is reduced to a system (1), (2) The
motion process itself on each linear section is described by a hyperbolic system of
two partial differential equations of first order ([3-5,7,8]).

Mathematical models of many real large objects with complex structure are
characterized by the following peculiarities: 1) a large number of subobjects L ; 2)

small dimensionality of the subobjects state vector n,, v=1,...,L; 3) long

duration of functioning N, , v=1,...,.L; 4) weak and arbitrary interconnections

v

between the subobjects, i.e. weak and arbitrary filling of matrices G, Q and

vectorsg®, q°, s=1,...,.L.

Features 1), 3) for real objects lead to the fact that the order of algebraic system
(1), (3), being equal to M, may exceed several thousand and tens of thousands,
that doesn't allow to use known numerical methods of solving algebraic equations
systems for their decision. Feature 4) leads to unshared boundary conditions,
making it necessary to use methods of carrying over boundary condition.

The peculiarity 2) allows easily to get relations which are equivalent to (1) , but
in reverse order of calculating:

yv,i _ Kv,i+lyv,i+l n gv,m, i — Nv -1,..1, v=1..L,
(4)
A = (AT B = (AR, =L, Ny -1 s=1.., L.
The aim of this work is to develop an efficient numerical method for solving the
system of discrete equations (1) with unseparated boundary conditions (2), (3)

taking into account peculiarities mentioned above. The method is based on the
analogue of method of carrying over (transfer) conditions and is reduced to solving
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series of specially built discrete Cauchy problems with respect to separate
subsystems of the system (1).

3. Numerical solution to the problem

The proposed approach to solving the considered problem is based on
transferring boundary conditions (3) to one end: to the left or right. This means that

relations (2) or (3) will be replaced by equivalent relations, in which the vector y*
will be missing when transferring conditions to the right end:
Qy" =R ()

or
Z“"S Ji=1..,n, (6)

and the vector y" will be missing when transferring conditions to the left end

Gy'=R )
or

zgls* sl _ H =1..n. (8)

After transferring condltlons to one end the systems (5), (6) or (7), (8) will be
obtained, which represent systems of n algebraic equations with n unknowns: y*

or y" . After solving these systems and defining y* or y" , the solution of overall

task is achieved by carrying out simple calculations using explicit recurrent
formulas (Cauchy problems) with respect to separate subsystems of discrete
equations (1) (while carrying over to the left) or subsystems (4) (while porting
conditions to the right).

Selecting the direction of carrying over the conditions (2), (3) depends on the
degree of filling matrices G and Q. Namely, when matrix G is less filled in

comparison with the matrix Q, then conditions need to be ported to the right, and
conversely, if matrix G is filled stronger than Q, the conditions should be ported

to the left. This rule will become apparent after the following description of the
procedure of carrying over.

Transferring conditions (2), more precisely (3), will be implemented separately
for each i —th condition, i =1,...,n.

Thus, let us consider an arbitrary i —th condition in (3), that will take the form
(6) after carrying over to the right side, where the §°°, R' are yet unknown new

coefficient values. Obtaining conditions in the form (6) will be carried out in
stages.
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Assume that not of all vector coefficients gij , J=1,...,L are equal to zero,
otherwise there would be no need to move the i —th condition to the right, since
this condition involves only the values y" . Let the first nonzero coefficient is g',

that is g #0, , ¢" =0, , i<v (0, —n,-dimensional vector, all of whose
components are equal to 0).
In this case, one could say that n, —dimensional vectors «* € R™ and

scalars B, k =1,..., N, perform carrying over the i —th condition (3) in respect
to the v—th vector of unknowns y"* to the right, if for all vectors y"*
satisfying to the v —th subsystem (1) following equalities hold
L ex L ie*x
ak*yvk + Zgls ySl+qus ySNS zﬂk, k =1’."' NV ' (9)
s=1

s=v+1
It is clear that under k =1 must be performed equalities:
al:giv1 ﬁlZRi. (10)
Vectors * and scalars B, k =1,.., N satisfying (9), (10), will be called
transfer coefficients. Substituting in (10) the values of transfer coefficients under
k = N, we obtain a new condition

S e S e B ni
Zgls ysl+qus yNs =R ,
s=y+1 s=1

in which following notation introduced
’q‘ivzqiv_i_aNl,’q'ij — ij' j=1,..., L, j¢V, RiZﬁNV.

Transfer coefficients o*, B, that carry over the condition (3) to the right, can
be determined in different ways. One of them is offered in the following theorem.
Theorem 1. Let the n, — dimensional vectors * and scalars A%, k =1,.., N, are
defined by the following recurrence relations (discrete Cauchy problems):

=A%, o'=¢g", k=1..,N,,
B =B +a"B*, p'=R', k=1.,N,. (11)

Then o, B are the transfer coefficients, carrying over the i—th condition

in (3) to the right respect to the y" — th decision of the v —th subsystem (1).
Proof. According to (10) under k=1 condition (9) is equivalent to i—th
condition in (3).

Assume that o, % and &, B*" under k>1 satisfy condition of
carrying over the i—th condition regarding the y" — decision of the v —th
subsystem (1).
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Consequently, this implieS'

'y +{Zg” y’1+ZQ” Y’ }:ﬁk. k=1...N

j=r+l j=1
(12)
k+l* vk+1 ij*,,j1 ij* k+1
gy’ +> "y’ :
o Eorvredaryn o
(13)

We take into account the v —th subsystem of (1) in (13):

ak+l*[Avk ka]_'_{ Zgu le+quj y } k+1 '

j=v+1

After subtracting equation (12) from thls equation and subsequent grouping
we obtain:

[akJrl*Avk —Olk*]ka +[_ﬂk+l +ﬁk +ak+l*B Vk] — 0
Given that this equation should hold for all possible solutions of the v —th
subsystem (1), we will require from coefficients o*, 8, ', B*"* the equality

to zero of expressions in square brackets
Taking into account (4), we obtain the necessary relations for transfer
coefficients in the form (11). After completing the procedure for replacing the

values of v —th vector y** in the i—th condition by value y"" with a new
coefficient G"" , we obtain a new condition equivalent to the previous one.

In this condition there is no value of y"*. Next, proceed to the next non-zero
0, j=1...L. This
means that i —th condition has been completely transferred to the right. Further all

the specified procedure is implemented for (i +1)- th condition. If (i +1) >n, then

all conditions (3) have been transferred to the right, and as a result there have been
obtained conditions of the form (5) or (6), equivalent to conditions (3).
Conditions (5) and (6) represent a system of n linear algebraic equations

relative to n— dimensional vector y" . Solving this system yields the vector y" ,

coefficient 9", j>v, until we get the condition g =

and further the desired solution y = (yl,...,y'\I ) of the problem is determined by
).

Similar to the above procedure of transferring conditions to the right , a
successive transfer of conditions to the left is carried out in order to get conditions
(7) or (8), being equivalent to the conditions (3).

Suppose that in i —th condition among vectors qij , J=1,...,L, the first non-
zero vector is ', i.e. " =0, , j<v, q" #0, .
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We will say that n, — dimensional vectors «* and scalars A%, k =1,..., N

perform carrying over the i —th condition (3) in respect to the vectors y** being
solutions of the v — th subsystem (1) to the left, if following equalities hold:

L L
ak*yvk +Zgi5*y51 + Zqis*yst = ,Bk, k :1,..., NV . (14)
s=1 s=v+1
OCN" _ qiv’ ﬂNV — Ri ) (15)

It is obvious that (14) under k = N, coincides with the i —th condition (3).

If o, g% k=1,.., N, are sweep coefficients, then from equality (14) under
k =1 we get a new condition
S e s - is*.,s -
207y 2 avy ™ =R,
s=1 s=v+1

that is equivalent to the i —th condition, in which introduced the notation:
gV =9"+a", 0"=9", j=L..N, j=v.
This condition differs from the condition (3) so that its i—th part doesn't
contain the summand with y*™ . Further, this procedure is repeated until there is

at least one coefficient q° different from zero. After that, carrying over is

performed for the next (i+1)-th condition if 1+1<n. Left transfer coefficients
that carry over i—th condition to the left, can be determined from the following
theorem.

Theorem 2. Let the n, — dimensional vectors «* and scalars A%, k =1,.., N, are
defined by the following recurrence relations (discrete Cauchy problems):
a“=A%a"t, o™ =q™ k=N, -LN, -2,..1,
B =p"-B"a"", pN =R, k=N, -LN, -2,..1. (16)
Then o, B* are the sweep coefficients for carrying over the i—th condition in

(3) to the right regarding the y" — th decision of the v —th subsystem (1).

The proof is similar to the above proof of Theorem 1.
The very process of converting all the conditions (2), (3) to the (5), (6) by

carrying over values y"" to the left is similar to the process described above for
carrying over conditions to the right. Completion of the carrying over process leads
to a system of N algebraic equations regarding n— dimensional vector y*. Further
after solving this system we hold a recurrent calculation of the desired subsystems
solutions y"* of system (1) from left toright, k =1,., N, v=1...,L.
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4. Results of numerical experiments

Consider the following system of discrete equations, consisting of five
subsystems (L=5,n,=2, N, =201, v =1..,5):
yr =y + 0,005 5, Y, =yr* +1,01y;"* —0,01e%* +0,0099,
k=1...20C
y12,k+1 — y12,k + 0’005 yg,k, y22,k+1 — y12,k +o’085 y22,k _0'0175 e0,0025k _

—0,005¢0s(0,005k) —0.015sin(0,005k) + 0,045,
yoKt =y 40,005 y3, Yyt =y +1,0025 y;* —0,0025,  (17)
y14,k+l — yl4k + 07005 yg,k, yg,k+1 — y14k +1’005 y;k _0'0025 e0,0025k _
~0,25x10k +0,005,
yf,k+l — yfk + 07005 yg,k, yg,k+l — ylsk +1,005 y;k _ 0’0025 e0,0025k _

—1,25x10"k? +0,5x10*k

with the following ten unshared conditions, including states in the initial and
final moments:

iyt Yt =0, (18)
yit-yit=0, (19)
y2—y3t=0, (20)
yit=4, (21)
St 22)
O @
yat —yste =0, (24)
yoNe _ySh _g. (25)
yyM=-1+3e, (26)
y2N =3 2.Je +sin(Y). (27)

It isn't difficult to verify that the solution of the problem (17)-(27) with
accuracy up to 107 is represented by vectors, which components for k =1,...201
are defined as follows

Y =0,25x107* (k —1)* + 2% 2,
v =0,01(k —1) + 2e%°%¢ D,
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y2* =0,015(k —1) — 2622 1 ¢0s(0,005 (k —1)), yo* =30 D _

—sin(0,005(k —1)),
yf,k — 0,005 (k _1) + 2e0,0025(k71) _1, yg,k — 1+ e0,0025(kfl)’
(28)
Y, =0125 x107(k —1)% + 2% 4 2,
y;‘r,k — O 005(k _1) + e0,00ZS(k*l)
Yo =0,125 x107° (k —1)% + 225D _3,
y5" =0,25x107 (k —1)* 4%,

We note that the system of equations (17) and conditions (18) - (27) were obtained
by simulating the finite-difference approximation of differential equation system
with partial derivatives of hyperbolic type, describing the fluid motion in pipe
network with structure shown in Fig. 1.

Fig 1. Conditional scheme of pipe network

The system (17) determines the motion mode only on the first layer at discrete
points of the pipeline sections. All sections have equal lengths and are divided into
200 parts. Conditions (18) and (23) determine the material balance law at nodal
points of the network, the conditions (19), (20), (24), (25) characterize conditions
of flow continuity (equality of pressure values at the ends of sections adjacent to
the node), conditions (21), (22), (26), (27) determine the operating modes of
external sources ( quantity of inflow and outflow of raw material by sources).

Taking into account an equal number of non-zero coefficients under y"* and

yVNV in the conditions (18) - (27), the direction of carrying over conditions does

not matter.
As a result of carrying over conditions (18) - (22) to the right the conditions
were obtained in the form of an algebraic system (5), havmg a ten-dimensional

matrix Q presented in Table 1, and a right part -vector R of the form:

R = [0.00353 9.72566 0.0 0.0 0.005009 -.07064 4.43656 0.24286 0.03244 -.00821]

Applying Gauss method with choosing the main member to solving the
resulting system of equations, the vector was obtained
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y" =(439986 443656 024032 024286 327706 329026 5.78862 580182 0.62037 0.63357 ).
By using this vector, the recurrent calculations were implemented to find

v, k=201,1, v =1,5, from subsystems of system (17). The accuracy of
the obtained results did not exceed the value
mkaxmaxmax‘Ay:k <10°.
\4 S

Table 1. Matrix ('3 elements of the system 2.1.

i1 2 3 4 5 6 7 |8 9 10
i
1 | -0.5601 | 0.5638 |-8.1103 8.1040 | -1 10.9836 | O 0 0 0
2 | 0.2331 - 0 0 -1 1 0 0 0 0
0.2331
3 0 0 231173 |-23.1173 | -1 1 0 0 0 0
4 0 0 0 0 0 0 1 ]-09821 | O 0
5 0 0 0 0 0 0 0 0 1 ]-0.9821
6 0 0 0 0 0 1 0 1 0 1
7 0 0 0 0 -1 1 0 0 1 -1
8 0 0 0 0 0 0 -1 1 1 -1
9 0 1 0 0 0 0 0 0 0 0
10 0 0 0 1 0 0 0 0 0 0

5. Conclusion

Numerical solution to discrete equation systems of large dimension, having a
block structure with "weak" and arbitrary connections between subsystems have
been considered in this work. Such systems have to be solved repeatedly while
optimizing parameters of objects with complex structure or discretizing optimal
control problems of processes described by equations with ordinary and partial
derivatives. Schemes and corresponding formulas are proposed, based on idea of the
method of carrying over boundary conditions, taking into account the peculiarities
of the Jacobian of a system and ‘weak’ filling of the Jacobian matrix of connection
conditions between subsystems.

The results of numerical experiments, obtained by solving problems arising
during the calculation of unsteady motion mode of fluid in the pipe network with
complex structure, to which have been applied implicit difference schemes of grid
method, are provided.
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Ayrilmayan sarhad sartli blok strukturlu diskret sisteminin
adadi halli

K.R. Ayda-zadas, C.9. Osadova

XULASO

Isdo ayrilmayan sorhod sortlorino malik blok strukturlu diskret sisteminin hollino
odadi yanasma toklif edilmisdir. sorhod sortlorinin kdciirilmesi {igiin diisturlar alinmis,
masalonin adadi hallinin naticalari verilmisdir ki, bu da toklif edilon iisulun effektivliyini
gostorir.

Acar sozlor: diskret dinamik sistemlor, miirokkob obyektin decompozisiyasi,
ayrilmayan sorhad sortlori, sorhad sortinin kogiiriilmosi tisulu.

YucjieHHOe pelieHUue JUCKPETHBIX cucTeM 0JIOYHOM CTPYKTYPBI €
Hepa3aeJeHHBIMHU MeKAY 0JIOKaMHM KPpaeBbIMH YCJIOBHAMH

K.P. Aiina-3ane, I.A. AcagoBa
PE3IOME

B pabore paccMmaTpuBaeTcs UYHCICHHOE pPENICHHE IUCKPETHBIX JUHAMHUYCCKHX
cucTeM OJIOYHOW CTPYKTYpPBI C HEpas3/IelICHHBIMH MEXy OJOKaMH KPAaeBBIMH YCIIOBHSIMU.
[Monyuensl GoOpMyIbl Uil OCYIIECTBICHHS IEPEHOCa YCIOBHU, NMPUBEIEHBI PE3yJbTaThl
YHUCJICHHBIX ~ OKCIIEPUMEHTOB, WUIOCTpUpytomue 3()(eKTHBHOCTh  MpeiaraeMoro
HOAXO07a.

KioueBble ciaoBa: JUCKPETHbIE AMHAMHYECKHE CHCTEMBI, JIEKOMIIO3UITHS
CJIOKHOTO 00BEKTa, Hepa3/Ie/ICHHbIE KPaeBble yCIOBHsI, METO] IEPEHOCA KPAEBBIX YCIOBHIA.
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