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1. Introduction 

 

  The article is devoted to the numerical solution to discrete dynamical systems 

of large dimension, having a block structure with boundary conditions unshared 

between blocks. 

Direct usage of methods of carrying over boundary conditions is not efficient 

due to the block structure of conditions that allows, as for many other classes of 

problems, significantly accelerate their solution. 

We note that a lot of encountered in practice mathematical models of discrete 

dynamic models of complex processes have been obtained by using the 

decomposition of complex objects into simpler subobjects with known mathematical 

models or subobjects, for which mathematical models could be easily constructed 

([1,7,9,10,12]). The decomposition may be carry out respect to spatial and/or 

temporal variables, and it is worth noting that the decomposition of a complex 

object is held so that the intermediate states of subobjects are not influenced each 

other, i.e. are independent, and the connection between subobjects is implemented 

only through input and output states of subobjects ([4,5,7]). Moreover, in practice 

subobjects are usually associated with an arbitrary but small number of other 

subobjects, and consequently conditions determining the relationship between 

subobjects are characterized by a weakly filled Jacobi matrices ([9,10]). 

In this paper we propose a numerical approach to solving discrete systems of 

block structure with weak and arbitrary connections between subsystems. The 

approach is based on the idea of methods of carrying over boundary conditions 
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([1,2,5,6]). The idea of article [6], where the numerical solution of a system of 

independent three point discrete equations with non-separated boundary conditions 

was considered , has been further developed in this article for the case of discrete 

systems of block structure with boundary conditions unshared between blocks. Not 

only were the formulas for implementation of transferring conditions obtained, also 

the results of numerical experiments are provided. We have considered the solution 

to the problem arising when applying methods of finite difference approximation to 

equations systems with partial derivatives of hyperbolic type, describing the 

movement of fluids in the pipeline of complex structure.     


2. Statement of the problem 

 

  Consider the system of equations describing complex discrete process (the 

object) consisting of mutually independent L  discrete subprocesses (subobjects), 

each of them is described by a system of linear algebraic equations 

 
iiii ByAy  1
, ,1,...,1  Ni  ni Ry  , L,...,1 .      (1) 

Here   i

n

ii yyy 


,...,1  is n -dimensional vector defining the state of the  th 

process in i  th discrete instant of time; 
iA
 and 

iB
 are accordingly n  - 

dimensional square matrix and vector; 
 nArang i  , Ni ,...,1 ; N  is duration 

of the   th process; L,...,1 ; * is the sign of transposition. 

We introduce the notation 





L

nn
1

 ,      M 


L

Nn
1

 ,       ,,...,1




 nk

n

kk Ryyy 


  

  nL Ryyyy 
1,1,21,11 ,...,, ,         .,...,,

,,2,1 21 nNLNNN Ryyyy L 


 

Here M  is the overall dimension of the whole system consisting of subsystems (1), 
nRy 1

 and 
nN Ry   are accordingly the states of all subprocesses in the initial 

and final (individual for each subprocess) instants of time.  

Considered subprocesses are connected through initial and final states in the 

shape of unshared boundary conditions, written in the form: 

RQyGy N 1
 ,                        (2) 

where      ijij qQgG  ,  are  matrices with dimension nn , 

 *1,..., nRRR   is given n dimensional vector. 

We assume that the rank of the augmented matrix  QG,  is equal to n , i.e. 

  nQGrang , , and in general the system of equations (1), (2) has a solution, and 

the only one. 

Conditions (2) are written in vector form, which will be used subsequently  
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



L

s

isNis
L

s

sis niRyqyg s

1

*

1

1* ,,...,1,                (3) 

where   is

n

isis

s
ggg ,...,1 ,   is

n

isis

s
qqq ,...,1 . 

The relations (1), (2) represent mathematical models for many complex objects, 

processes functioning discretely with lumped or distributed parameters ([3-8]). At 

the same time for their mathematical modeling was applyed the decomposition 

method upon temporal and / or spatial variables, i.e., partitioning the entire object 

into separate subobjects, which function independently from each other, and 

connection between them is implemented through their input and output states, i.e. 

by the conditions (2). 

Boundary value problems described by systems of differential equations with 

ordinary or partial derivatives, for solving which grid methods were applyed, can 

also be converted  to considered problems of the form (1), (2)  ([1-6, 10-12]). In this 

case systems of equations themselves consist of separate independent subsystems, 

connected only by means of initial and/or boundary conditions. In particular, the 

problem of calculating the unsteady motion of  fluid, gas in pipeline transportation 

networks with complex, loopback  structure is reduced to a system (1), (2) The 

motion  process itself on each linear section is described by a hyperbolic system of 

two partial differential equations of first order ([3-5,7,8]). 

Mathematical models of many real large objects with complex structure are 

characterized by the following peculiarities: 1) a large number of subobjects L ; 2) 

small dimensionality of the subobjects state  vector n , L,...,1 ; 3) long 

duration of functioning N , L,...,1 ; 4) weak and arbitrary interconnections 

between the subobjects, i.e. weak and arbitrary filling of matrices QG,  and 

vectors
isg , 

isq , Ls ,...,1 . 

Features 1), 3) for real objects lead to the fact that the order of algebraic system 

(1), (3), being equal to M ,  may exceed several thousand and tens of thousands, 

that doesn't allow to use known numerical methods of solving algebraic equations 

systems for their decision. Feature 4) leads to unshared boundary conditions, 

making it necessary to use methods of carrying over boundary condition. 

The peculiarity 2) allows easily to get  relations which are equivalent to (1) , but 

in reverse order of calculating: 
1,1,1,,   iiii ByAy 
,   1,...,1 Ni ,   L,...,1 ,    

      (4) 

  11,,  isis AA ,     isisis BAB ,11,,  ,   .,...,1,1,...,1 LsNi s   

The aim of this work is to develop an efficient numerical method for solving the 

system of discrete equations (1) with unseparated boundary conditions (2), (3) 

taking into account peculiarities mentioned above. The method is based on the 

analogue of method of carrying over (transfer) conditions and is reduced to solving 
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series of specially built discrete Cauchy problems with respect to separate 

subsystems of the system (1). 

 

3. Numerical solution to the problem 

    The proposed approach to solving the considered problem is based on 

transferring boundary conditions (3) to one end: to the left or right. This means that 

relations (2) or (3) will be replaced by equivalent relations, in which the vector 
1y  

will be missing when transferring conditions to the right end: 

   RyQ N ~~
                               (5) 

or  

   



L

s

isNis niRyq s

1

* ,,...,1,
~~        (6) 

and the vector 
Ny  will be missing when transferring conditions to the left end 

   RyG
~~ 1           (7) 

or 

   niRyg i
L

s

sis ,...,1,
~~

1

1* 


.        (8) 

After transferring conditions to one end the systems (5), (6) or (7), (8) will be 

obtained, which represent systems of n  algebraic equations with n  unknowns: 
1y  

or 
Ny . After solving these systems and defining 

1y  or 
Ny , the solution of overall 

task is achieved by carrying out simple calculations using explicit recurrent  

formulas (Cauchy problems) with respect to separate subsystems of discrete 

equations (1) (while carrying over to the left) or subsystems (4) (while porting 

conditions to the right). 

Selecting the direction of carrying over the conditions (2), (3) depends on the 

degree of filling matrices G  and Q . Namely, when matrix G  is less filled in 

comparison with the matrix Q , then conditions need to be ported to the right, and 

conversely, if matrix G  is filled stronger than Q , the conditions should be ported 

to the left. This rule will become apparent after the following description of the 

procedure of carrying over. 

Transferring conditions (2), more precisely (3), will be implemented separately 

for each i th condition, .,...,1 ni   

Thus, let us consider an arbitrary i th condition in (3), that will take the form 

(6) after carrying over to the right side, where the 
*~ isq , 

iR
~

  are yet unknown new 

coefficient values. Obtaining conditions in the form (6) will be carried out in 

stages. 
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Assume that not of all vector coefficients  
ijg , Lj ,...,1  are equal to zero, 

otherwise there would be no need to move the i th condition to the right, since 

this condition involves only the values 
Ny . Let the first nonzero coefficient is 

ig , 

that is 



n

ig 0 , 
jn

ijg 0 , j  ( 
nn 0 -dimensional vector, all of whose 

components are equal to 0). 

In this case, one could say that n dimensional vectors  nk R   and 

scalars  Nkk ,...,1,   perform carrying over the i th condition (3) in respect 

to the  th  vector of unknowns 
ky   to the right, if for all vectors 

ky   

satisfying to the  th subsystem (1)  following equalities hold 





L

s

ksNis
L

s

siskk Nkyqygy s

1

*

1

1** ,...,1, 



  .      (9) 

It is clear that under 1k  must be performed equalities: 

,1  ig  
iR1 .       (10) 

Vectors 
k  and scalars  Nkk ,...,1,   satisfying (9), (10), will be called  

transfer coefficients. Substituting in (10) the values of transfer coefficients under 

Nk   we obtain a new condition 





L

s

isNis
L

s

sis Ryqyg s

1

*

1

1* ,
~~



 

in which following notation introduced   

 ,~,~ ijijNii qqqq    NiRjLj 
~

,,,...,1 . 

Transfer coefficients 
k , 

k , that carry over the condition (3) to the right, can 

be determined in different ways. One of them is offered in the following theorem. 

Theorem 1. Let the n dimensional vectors 
k  and scalars  Nkk ,...,1,   are 

defined by the following recurrence relations (discrete Cauchy problems): 

            
kkk A  1

,     
 ig1

, Nk ,...,1 , 

kkkk B   11
,   

iR1 , Nk ,...,1 .        (11) 

Then 
k , 

k  are the transfer coefficients, carrying over the  i th condition 

in (3) to the right respect to the y  th decision of the   th subsystem (1). 

Proof. According to (10) under 1k  condition (9) is equivalent to i th 

condition in (3). 

Assume that 
k , 

k  and 
1k , 

1k  under 1k  satisfy condition of 

carrying over the i th condition regarding the y  decision of the  th 

subsystem (1). 
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Consequently, this implies: 





  Nkyqygy k
L

j

jNij
L

j

jijkk j ,...,1,
1

*

1

1** 







 



,   

    (12) 

1

1

*

1

1*1,*1 



 







  k

L

j

jNij
L

j

jijkk jyqygy 



.    

    (13) 

We take into account the  th subsystem of (1) in (13): 

  1

1

*

1

1**1 



 







  k

L

j

jNij
L

j

jijkkkk jyqygByA 



. 

After subtracting equation (12) from  this equation and subsequent grouping 

we obtain: 

0][][ *11**1   kkkkkkkk ByA    

Given that this equation should hold for all possible solutions of the  th 

subsystem (1), we will require from coefficients 
k , 

k , 
1k , 

1k  the equality 

to zero of  expressions in square brackets 

Taking into account (4), we obtain the necessary relations for transfer 

coefficients in the form (11). After completing the procedure for replacing the 

values of  th vector 
1y  in the i th condition by value  N

y  with a new 

coefficient  N
q~ , we obtain a new condition equivalent to the previous one.  

In this condition there is no value of 
1y . Next, proceed to the next non-zero 

coefficient 
ijg , j , until we get the condition 

jn

ijg 0 , Lj ,...,1 . This 

means that i th condition has been completely transferred to the right. Further all 

the specified procedure is implemented for ( 1i )- th condition. If ni  )1( , then 

all conditions (3) have been transferred to the right, and as a result there have been 

obtained conditions of the form (5) or (6), equivalent to conditions (3). 

Conditions (5) and (6) represent a system of n  linear algebraic equations 

relative to n dimensional vector 
Ny . Solving this system yields the vector 

Ny , 

and further  the desired solution   Nyyy ,...,1
 of the problem is determined by 

(1). 

Similar to the above procedure of transferring conditions to the right ,  a 

successive transfer of conditions to the left is carried out in order to get conditions 

(7) or (8), being equivalent to the conditions (3). 

Suppose that in i th  condition among vectors 
ijq , Lj ,...,1 , the first non-

zero vector is 
iq , i.e. 

jn

ijq 0 , j , 
jn

iq 0
. 
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We will say that n dimensional vectors 
k  and scalars  Nkk ,...,1,   

perform carrying over the i th condition (3) in respect to the vectors 
ky  being 

solutions of the  th subsystem (1) to the left, if following equalities hold: 





L

s

kNsis
L

s

siskk Nkyqygy s

1

*

1

1** ,...,1,



  .               (14) 

iNiN
Rq     , .                (15) 

It is obvious that (14) under Nk   coincides with the i th condition (3). 

If 
k ,  Nkk ,...,1,   are sweep coefficients, then from equality (14) under 

1k  we get a new condition 





L

s

iNsis
L

s

sis Ryqyg s

1

*

1

1* ,
~~



 

that is equivalent to the i th condition, in which introduced the notation: 

 ,~,~ 1 ijijii gggg     jNj ,,...,1 .  

This condition differs from the condition (3) so that its i th part doesn't 

contain the summand  with  N
y . Further, this procedure is repeated until there is 

at least one coefficient 
isq  different from zero. After that, carrying over is 

performed for the next ( 1i )-th condition if ni 1 . Left transfer coefficients 

that carry over i th condition to the left, can be determined from the following 

theorem. 

Theorem 2. Let the n dimensional vectors 
k  and scalars  Nkk ,...,1,   are 

defined by the following recurrence relations (discrete Cauchy problems): 
1 kkk A  
,      iNN

q , ,1,...,2,1   NNk , 

11   kkkk B  
,   

iN
R , 1,...,2,1   NNk .                (16) 

Then 
k , 

k  are the sweep coefficients for carrying over  the  i th condition in 

(3) to the right regarding the y  th decision of the   th subsystem (1). 

The proof is similar to the above proof of Theorem 1. 

The very process of converting all the conditions (2), (3) to the (5), (6) by 

carrying over values  N
y  to the left  is similar to the process described above for 

carrying over conditions to the right. Completion of the carrying over process leads 

to a system of n  algebraic equations regarding n dimensional vector 
1y . Further 

after solving this system we hold a recurrent calculation of the desired subsystems 

solutions 
ky  of  system (1) from left to right, Nk ,...,1 , L,...,1 . 
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4. Results of numerical experiments 

    Consider the following system of discrete equations, consisting of five 

subsystems ( 5,...,1,201,2,5   NnL ): 

,005,0 ,1

2

,1

1

1,1

1

kkk yyy 
    ,0099,001,001,1 005,0,1

2

,1

1

1,1

2  kkkk eyyy

2 0 0,...,1k , 

,005,0 ,2

2

,2

1

1,2

1

kkk yyy 
    kkkk eyyy 0025,0,2

2

,2

1

1,2

2 0175,0085,0  

    

 ,045,0)005,0sin(015.0)005,0cos(005,0  kk    

,005,0 ,3

2

,3

1

1,3

1

kkk yyy 
    ,0025,00025,1 ,3

2

,3

1

1,3

2  kkk yyy    (17) 

,005,0 ,4

2

,4

1

1,4

1

kkk yyy 
     kkkk eyyy 0025,0,4

2

,4

1

1,4

2 0025,0005,1  

005,01025,0 4   k , 

,005,0 ,5

2

,5

1

1,5

1

kkk yyy 
     kkkk eyyy 0025,0,5

2

,5

1

1,5

2 0025,0005,1  

     kk 427 105,01025,1    

with the following ten unshared conditions, including states in the initial and 

final moments: 

01,3

1

1,2

1

1,1

1  yyy  ,      (18) 

01,3

2

1,1

2  yy ,       (19) 

01,3

2

1,2

2  yy ,       (20) 

41,4

1 y ,        (21) 

11,5

1 y ,        (22) 

4
14543 ,5

1

,4

1

,3

1  eyyy
NNN

,      (23) 

053 ,5

2

,3

2 
NN

yy ,      (24) 

054 ,5

2

,4

2 
NN

yy ,       (25) 

ey
N

311,1

1  ,      (26) 

)1sin(232,2

1  ey
N

.      (27) 

It isn't  difficult to verify that the solution of the problem (17)-(27) with 

accuracy up to 
810
 is represented by vectors, which components for 201,...,1k  

are defined as follows 

,22)1(1025,0 )1(005,024,1

1   kk eky               

,2)1(01,0 )1(005,0,1

2

 kk eky  
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)),1(005,0cos(2)1(015,0 )1(0025,0,2

1   keky kk   )1(0025,0,2

2 3 kk ey  

              

)),1(005,0sin(  k  

,12)1(005,0 )1(0025,0,3

1  kk eky                   ,1 )1(0025,0,3

2

 kk ey   

    (28) 

,22)1(10125,0 )1(0025,024,4

1   kk eky        

,)1(005,0 )1(0025,0,4

2

 kk eky  

,32)1(10125,0 )1(0025,036,5

1   kk eky         

)1(0025,024,5

2 )1(1025,0   kk eky . 

We note that the system of equations (17) and conditions (18) - (27) were obtained 

by simulating  the finite-difference approximation of differential equation system 

with partial derivatives of hyperbolic type, describing the fluid motion in pipe 

network with structure shown in Fig. 1. 

 

 

 

 

 

 

 

          Fig 1. Conditional scheme of pipe network 

 

The system (17) determines the motion mode only on the first layer at discrete 

points of the pipeline sections. All sections have equal lengths and are divided into 

200 parts. Conditions (18) and (23) determine the  material balance law at  nodal 

points of the network, the conditions (19), (20), (24), (25)  characterize conditions 

of flow continuity (equality of pressure values at  the ends of sections adjacent  to 

the node), conditions (21), (22), (26), (27) determine the operating modes of 

external sources ( quantity of inflow and outflow of raw material by sources). 

Taking into account an equal number of non-zero coefficients under 
1y  and 

 N
y  in the conditions  (18) - (27), the direction of carrying over conditions does 

not matter. 

As a result of carrying over conditions (18) - (22) to the right the conditions 

were obtained in the form of an algebraic system (5), having a ten-dimensional 

matrix Q
~

 presented in Table 1, and a right part -vector R
~

 of the form: 

 .00821-  0.03244  0.24286  4.43656  .07064-  0.005009  0.0   .00 9.72566  0.00353
~

R

 Applying Gauss method with choosing the main member to solving the 

resulting system of equations, the vector was obtained 
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  .0.63357  0.62037  5.80182  5.78862  3.29026  3.27706  0.24286   0.24032   4.43656  4.39986


Ny  

By using this vector, the recurrent calculations were implemented to find 

5,1,1,201,   ky k
, from subsystems of system (17). The accuracy of 

the obtained results did not exceed the value 
610maxmaxmax  k

s
sk

y


. 

 

Table 1. Matrix Q
~

elements of the system 2.1. 

 
  j  

i  
1 2 3 4 5 6 7 8 9 10 

1 -0.5601 0.5638 -8.1103 8.1040 -1 0.9836 0 0 0 0 

2 0.2331 -

0.2331 

0 0 -1 1 0 0 0 0 

3 0 0 23.1173 -23.1173 -1 1 0 0 0 0 

4 0 0 0 0 0 0 1 -0.9821 0 0 

5 0 0 0 0 0 0 0 0 1   -0.9821 

6 0 0 0 0 0 1 0 1 0 1 

7 0 0 0 0 -1 1 0 0 1 -1 

8 0 0 0 0 0 0 -1 1 1 -1 

9 0 1 0 0 0 0 0 0 0 0 

10 0 0 0 1 0 0 0 0 0 0 

 
5. Conclusion 

 

   Numerical solution to discrete equation systems of large dimension, having a 

block structure with "weak" and arbitrary connections between subsystems have 

been considered in this work. Such systems have to be solved repeatedly while 

optimizing parameters of objects with complex structure or discretizing optimal 

control problems of processes described by equations with ordinary and partial 

derivatives. Schemes and corresponding formulas are proposed, based on idea of the 

method of carrying over boundary conditions, taking into account the peculiarities 

of the  Jacobian  of a system and 'weak' filling of the Jacobian matrix of  connection 

conditions between subsystems. 

The results of numerical experiments, obtained by solving problems arising 

during the calculation of unsteady motion mode of fluid in the pipe network with 

complex structure, to which have been applied implicit difference schemes of grid 

method, are provided.   
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Ayrilmayan sərhəd şərtli blok strukturlu diskret sisteminin  

ədədi həlli 

 

K.R. Ayda-zadə, C.Ə. Əsədova  

 

XULASƏ 

 
İşdə ayrılmayan sərhəd şərtlərinə malik blok strukturlu diskret sisteminin həllinə 

ədədi yanaşma təklif edilmişdir. sərhəd şərtlərinin köçürülməsi üçün düsturlar alınmış, 

məsələnin ədədi həllinin nəticələri verilmişdir ki, bu da təklif edilən üsulun effektivliyini 

göstərir.  

Açar sözlər: diskret dinamik sistemlər, mürəkkəb obyektin decompozisiyası, 

ayrılmayan sərhəd şərtləri, sərhəd şərtinin köçürülməsi üsulu. 

 

Численное решение дискретных систем блочной структуры с 

неразделенными между блоками краевыми условиями 

 

К.Р. Айда-заде, Д.А. Асадова 

 

РЕЗЮМЕ 

 
В работе рассматривается численное решение дискретных динамических 

систем блочной структуры с неразделенными между блоками краевыми условиями. 

Получены формулы для осуществления переноса условий, приведены результаты 

численных экспериментов, иллюстрирующие эффективность предлагаемого  

подхода. 

Ключевые слова: дискретные динамические системы, декомпозиция 

сложного объекта, неразделенные краевые условия, метод переноса краевых условий. 

 

 


